

IO1: Design of Module Advanced Materials and Materials for ALM Mechanical characterization of materials processed by ALM

FRACTURE AND FATIGUE RESISTANCE

With the support of the Erasmus+ Programme of the European Union's ERASMUS+ Programme under the Strategic Partnerships for Higher Education Action. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

INTRODUCTION TO FRACTURE MECHANICS APPROACH

Outline

Introduction to Fracture Mechanics Approach

- Approach to design
- Fracture Mechanics approaches
 - Linear Elastic Fracture Mechanics
 - Elastic- Plastic Fracture Mechanics
 - Post-Yield Fracture Mechanics
- Standards for determination of fracture parameters

Fracture of additive manufactured materials

- Metals: Ti-6AI-4V, Stainless Steel, AI-12Si alloy
- Ceramics: Al₂O₃
- Polymers: PA12

Fracture Mechanics

Fracture mechanics studies the load-bearing capacity of structures in the presence of initial defects.

The defects in form of cracks are assumed to exist in structures and Fracture Mechanics studies the conditions of initiation, growth and arrest of cracks.

The defects can appear in the structure by three ways:

- They can exist in a material due to its composition (second-phase particles, debonds in composites, etc).
- They can be introduced in a structure during fabrication.
- They can be created during the service life of a component (fatigue cracks, Environment assited or creep cracks, etc).

Conventional strength of materials approach

Fracture mechanics approach

Can fracture be prevented by constructing a structure that has no defects?

Absolutely no

To attain safe design of structures:

- The safe operating load should be determined for a crack of a given size, assumed to exist in the structure
- Given the operating load, the size of the crack that is created in the structure should be determined.

Fracture mechanics approach

For **safe design**, some questions are to be answered:

- 1. what is the maximum crack size that a material can sustain safely?
- 2. What is the strength of a structure as a function of crack size?
- 3. How does the crack size relate to the applied loads?
- 4. What is the critical load required to extend a crack of known size, and is the crack extension stable or unstable?
- 5. how does the crack size increase as a function of time?

Fracture mechanics approach

Objective: to determine the **crack driving force** that allows to determine the force as a function of the material behaviour, crack size, structural geometry and loading conditions.

 $K, G, J, \delta, w = f(\sigma, a, geometry, loding condition)$

The critical value of this parameter is named fracture toughness (material's property), and the failure occurs

$$K = K_C$$

$$G = G_C$$

$$J = J_C$$

$$\delta = \delta_C$$

$$w_f = w_e$$

Conventional strength of materials approach

Effect of material properties on fracture: Fracture Mechanics Approaches

Elastic-Plastic Fracture Mechanics, EPFM

Low- and medium-strength steel, Polymers above Tg (viscoelastic)

Post-Yield Fracture Mechanics, PYFM

Crack driving force: specific work of fracture, w_f Plastic films

IO1: FRACTURE AND FATIGUE RESISTANCE

INTRODUCTION TO FRACTURE MECHANICS APPROACH

Fracture toughness testing

POLYMERS					
ISO 13586	Plastics — Determination of fracture toughness (G_{IC} and K_{IC}) — Linear elastic fracture mechanics (LEFM) approach				
ASTM D5045	Standard test method for plane-strain fracture toughness and energy release rate of plastic materials				
ASTM D6068	Standard Test Method for Determining J-R Curves of Plastic Materials				

CERAMICS					
ASTM C1421	Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature				

INTRODUCTION TO FRACTURE MECHANICS APPROACH

Fracture toughness testing

	METALS				
ASTM	Standard test method for linear-elastic plane-strain				
E399	fracture toughness K _{IC} of metallic materials.				
ISO	Metallic materials – determination of plane-strain fracture				
12737	toughness.				
ASTM	Standard test method for measurement of fracture				
E1820	toughness.				
ISO	Metallic materials – unified method of test for the				
12135	determination of quasistatic fracture toughness.				
ASTM	K P ourve determination testing				
E561	R-R curve determination testing.				
ASTM	Standard test method for plane-strain (chevron-notch)				
E1304	fracture toughness of metallic materials				

Fracture properties of AM metals

Ti-6Al-4V						
Technique	Condition	K _{IC} Parallel (MPam ^{1/2})	K _{IC} Perpendicular (MPam ^{1/2})	Anisotropy		
	As-built	28 ± 2	16–23	17.9		
	Stress-relieved	28 ± 2	30–31 ± 2	-10.9	Cain et al Addit Manuf 5 (2015)	
SLM	Heat-treated	41 ± 2	49 ± 2	-19.5		
	As-built	66.9 ± 2.6	41.8–64.8 ± 16.9	3.1	Edwards Fatigue Fract Eng Mater Struct 38 (2015)	
EBM	As-built	110 ± 7.4	102 ± 8.9	7.3	Edwards et al J. Manuf Sci Eng 135 (2013)	
	As-built	67–80	65	18.8	Seifi et al JOM 65 (2017)	
Wrought		ASM				
Cast		International				

19

IO1: FRACTURE AND FATIGUE RESISTANCE

FRACTURE OF ADDITIVE MANUFACTURED MATERIALS

Fracture properties of AM metals

Anistropy in Ti-6Al-4V

- Grain morphology: epitaxial columnar grain growth, caused by heterogeneous recrystallization and layer banding during the AM process.
- Heterogeneous recrystallization due to heteregeneous residual stresses within the metal parts.
- Lack-of-fusion defects.

Fracture properties of AM metals

306 L Stainless steel						
Technique	Condition	K _{IC} Parallel (MPam ^{1/2})	K _{IC} Perpendicular (MPam ^{1/2})	Anisotropy		
Conventional		Int J Adv Manuf Technol 51 (2010)				
SLM + stress relieving (500°C 1 h)	BD n+2	72.3	62.9	15	Suryawanshi et	
		86.8	79.6	9	696 (2017)	

IO1: FRACTURE AND FATIGUE RESISTANCE

FRACTURE OF ADDITIVE MANUFACTURED MATERIALS

Fracture properties of AM metals

306 L Stainless steel

Fracture properties of AM metals

Fracture properties of AM metals

Ceramic Additive Manufacturing Techniques

Single-step processes		Multi-step processes						
Bedless	Bed	Bed					Bedless	
Directed Energy Deposition	Powder Bed	Fusion	Binder Jetting	Sheet Laminati on	Material Extrusion		Material Jetting	Vat Photopoly merization
LENS	Powder-dLS	Powder-iLS	Powder-BJ	LOM	Wax-	Water-	Solvent-	SL
	Slurry-dLS	Slurry-iLS	Slurry-BJ	CAM- LEM	based	based	DIP	DLP/LCM
						RC/DIW	Wax-DIP	SPPW
					MJC	FEF		2PP
LENS: Laser Er	ngineering Net Sl	naping			T3DP	CODE		
Dls/iLS: direct BJ: Binder Jett	Dls/iLS: direct/indirect Laser Sintering BJ: Binder Jetting					3DGP		
LOM: Laminated Object ManufacturingCAM-LEM: Computed-Aided manufacturing of Laminated Engineering MaterialsSL: StereolithographyDLP: Digital Light ProjectionRC: Robocasting						ng ssited Extrusion		
LCM: Lithography-based Ceramic Manufacturing SPPW: Self-Propagating Photopolymer Wayeguide					DIM FEF:	I: Direct Ink Freeze-Forr	writing n Extrusion Fabi	rication

2PP: Two-Photon Photopolymerisation

FDC: Fused Deposition Ceramics

MJS: Multiphase Jet Solidification

3DGP: 3D Gel Printing **DIP:** Direct Inkjet Printing

CODE: Ceramic on Demand Extrusion

Ceramic Additive Manufacturing Techniques

Al ₂ O ₃					
Те	chnique	Remarks	Sintered density (%)	K _{IC} (MPam ^{1/2})	
Conventional		Slip casting	>99.7	3.7	Hotta et al Powder Technol 149 (2005)
		Tape casting	98.1	4.29 ± 0.06	Yu et al Ceram Int 41 (2015)
Single Step	LENS	As-fabricated	94	2.1 ± 1.3	Balla et al Int J Appl
		Heat treatment (1600 °C, 5 h)	98	4.4 ± 1.4	Ceram Technol 5 (2008)
Multiple step	Material extrusion process: RC	1.40 μm average grain size	97	3.31 ± 0.23	Feilden et al J Eur Ceram Soc 36 (2016)
	Material extrusion process: CODE	Equiaxed grains 5 μm.	98	4.5 ± 0.1	Ghazanfari et al Int J Appl Ceram Technol 14 (2017)
	Direct Inkjet printing: PSD	1.6 ± 0.3 GPa compressive strength	93.7	4.7 ± 0.3	DeVries et al J Eur Ceram Soc 38 (2018)

Polymer Additive Manufacturing Techniques

Polymer Additive Manufacturing Techniques

PA12

		Processing parameters	Testing conditions	K _{ıc} (MPa∙m¹/²)	J _{ic} (kJ/m²)
	Hitt et al Proc Inst Mech Eng Part B 48 (2012)	PA2200. EOS Formiga P100 Power 21 W; Laser scan 2.5 m/s; Layer height 250 μm; Building chamber 172 °C	(SENB)		2.9-4.3
	Brugo et al.	PA2200, EOS Formiga P100 Power 21 W	Load parallel to the layers (CT)	4.5-4.8	
SLS	Polym Test 50 (2016)	Laser scan 2.5 m/s Layer height 100 µm Building chamber 172 °C	Load perpendicular to the layers (CT)	3.3-4.0	
	Seltzer et al. Mater Sci Eng A 528 (2011)	Duraform 3D Systems	Dry (SENB)	3.00 ± 0.05 (PA-12) 3.6 ± 0.1 (25wt% short fibers) 3.40 ± 0.04 (43wt% glass beads)	
			Saturated in water (SENB)	0.70 ± 0.05 (PA-12) 2.6 ± 0.1 (25wt% short fibers) 2.6 ± 0.2 (43wt% glass beads)	
	Salazar et al	Duraform 3D Systems	Dry at 23 °C (CT)	3.2 ± 1.2	
	Comp Part B		Dry at -50 °C(CT)	2.7 ± 0.2	
	Eng 59 (2014)		Saturated in water at 23 °C (CT)	1.3 ± 0.2	
	Crespo et al J Strain Anal Eng Des 54 (2019)	PA2200 EOS Formiga P100	Load parallel to the layers(SENT)	3.2 ± 0.3 (2 mm/min) 2.1 (5·10 ⁵ mm/min)	

MECHANICAL CHARACTERIZATION OF MATERIALS PROCESSED BY ALM

Polymer Additive Manufacturing Techniques

PA12

		Processing parameters	Testing conditions	K _{IC} (MPa∙m¹/²)	J _{IC} (kJ/m²)
		PA2200	Load perpendicular to the layers (SENB)	2.282 (25 W, 1.5 m/s)	
	Linul et al Theor	Power 21-25 W			
	Appl Fract Mech	Laser scan 1.5-2.5 m/s	Load parallel to the layers (SENB)	1.098/25 W + 1.5 m/c	
	106 (2019)	Layer height 150 μm	Load parallel to the layers (SLND)	1.098 (25 W, 1.5 11/3)	
		Building chamber 170 °C			
		Duraform	Load parallel to the layers (DENT)		
	Schneider and	3D Systems; Power 2.8 W		4.1 ± 0.5	
SLS	Kumar Polym Test	Laser scan 4·10 ⁴ points /s			
	86 (2019)	Layer height 100 µm	load perpendicular to the layers (DENT)	42+06	
		Building chamber 147 °C			
		PA2200; EOS Formiga P100	Load parallel to the layers(DCB)	2.3 ± 0.1	
	Stoia et al	Power 25W;			
	Polymers 11	Laser scan 1.5 mm/s	Load perpendicular to the layers (DCB)	0.9 ± 0.1	
	(2019)	Layer height 250 µm			
		Building chamber 170.5 °C			
		Tronxy X5 3D printer, 0,4 mm			
	Fonseca et al	nozzle diameter, layer height			0.80 ±
FDIM	Compos Struct	0,3 mm, extrusión	Load perpendicular to the layers (DCB)		0.08
	214 2019	temperatura 260 °C, bed			
		temperatura 90°C			
	Hitt et al Proc Inst	Rilsan AMNO PA12 pellets			
IM	Mech Eng Part B	Negri-Bossi NB62 machine	SENB		2.9-4.3
	48 (2012)	Mould temperature 40 °C			
		Melt injected at 240 °C			

MECHANICAL CHARACTERIZATION OF MATERIALS PROCESSED BY ALM

Polymer Additive Manufacturing Techniques

SLS PA12						
Technique Density (g/cm³) Porosity (%) Spherulity size (μm)						
Conventional Injection Moulding - IM	1.018 ± 0.005	0.2	13 ± 3			
SLS	0.982 ± 0.005	3.7	50 ± 10			

Polymer Additive Manufacturing Techniques

IO1: FRACTURE AND FATIGUE RESISTANCE

FRACTURE OF ADDITIVE MANUFACTURED MATERIALS

Polymer Additive Manufacturing Techniques

SLS PA12

IO1: FRACTURE AND FATIGUE RESISTANCE

FRACTURE OF ADDITIVE MANUFACTURED MATERIALS

Polymer Additive Manufacturing Techniques

SLS PA12

FDM PA12

IM PA12

