Financial Aspects of

 Additive Manufacturing
Learning Outcome

You know cost levers of Additive Manufacturing

You know fundamental concepts of valuation

You know how to calculate Amortization, Net Present Value and Return on Investment

You are able to do AM cost calculations (polymer, metal)

1. Cost Levers in AM

AM Applications

Innovative Fabrication of Given Parts (case I: Fuel Nozzle, EOS)

Manufacturing of Optimized Parts (case II: Tooling, EOS)
Fabrication of New Parts

CASE I - Fuel Nozzle at "Company I"

- Production of fuel nozzles for aircrafts
- Production capacity 700 parts per year
- Cost per part €100
- Profit margin per part 5\%
\square Problem
e-Manufacturing Solutions
- Fuel nozzle are made up of 20 disparate parts procured from different suppliers
- Brazed and welded together
- Heat durability, weight, stability of components
\square Possible Solutions
- AM production of fuel nozzle as a single part that replicates all twists, turns and interior chambers of the old fuel nozzle
\square Investment and costs
- Investment for AM System €650,000 required + annual costs $€ 40,000$ for service contract and €60,000 for system operator
\square Challenges
- Adaption to changes in markets
- Flexibility, introduction of AM facilities
- Increased cost
- Complexity of the adoption and modernising process
- Time constraints
\square Prototyping
e-Manufacturing Solutions
- Weight - AM fuel nozzle: 25% lighter than traditional product
- Five times stronger
- Cost saving approximately $\$ 3$ million per Aircraft per year
\rightarrow Assumed Value add: 20\%
- Return on investment and amortization?

CASE II - Tooling at "Company II"

- Production of power supply units for mobile phones and other devices
- Production of 800,000 units per year and annual production costs of $€ 220,000$
- Sales price $€ 2$ per unit, perfect market
\square Problem
-Manufacturing Solutions
- Traditional tools: Drilling, turning etc. of cavities for cooling (hardening of the heat-liquefied plastic the supply units are made of)
- Traditional tools don't allow further optimization of the cooling process due to limited form and design
\square Possible Solutions
- Intensified cooling - bringing elements much more closer to the cavity
- New tools with complex cavities using AM
\square Investment
- Investment AM of $€ 10$ Mio required
\square Challenges
- Key element to be improved
- Cooling process of finished products
- Time taken to cool the finished products

Prototyping

e-Manufacturing Solutions

- Time required for cooling reduced from 14 to 8 seconds per production cycle
- Company could increase monthly output through efficiency gain by more than 56,000 units or 600,000 per year
- Very Important: Possible annual cost savings amount to €20,000
- Return on investment and amortization??

The overall aim is to leverage value add through additive manufacturing technology

Traditional manufacturing

Time reduction
Additional Value

- Reduced lifecycle cost
- Customized
- Higher quality
- Supply chain
- Maintenance

Cost reduction

- Supply chain

Cost levers are hidden in the whole AM production process

TUV

Summary Cost Levers in AM

Quality management is a very important and expensive cost driver in AM

2. Fundamental Concepts of Valuation

Future Value and Compounding

Suppose you deposit $€ 1$ for one year at a rate of 9%. How much will it amount to in one year?

Future Value and Compounding

Suppose you deposit €1 for one year at a rate of 9%. How much will it amount to in one year?
$€ 1 \times(1+r)=€ 1 \times 1.09=€ 1.09$
What happens if you leave it in the account for another year?

Future Value and Compounding

Suppose you deposit €1 for one year at a rate of 9%. How much will it amount to in one year?
$€ 1 \times(1+r)=€ 1 \times 1.09=€ 1.09$
What happens if you leave it in the account for another year?
$€ 1 \times(1+r) \times(1+r)=€ 1 \times(1+r)^{2}$
$€ 1 \times(1.09) \times(1.09)=€ 1 \times(1.09)^{2}=€ 1+€ 0.18+€ 0.0081=€ 1.1881$

Future Value of an Investment: $F V=C_{0}^{*}(1+r)^{\top}$

Present Value of an Investment:

$$
P V=C_{t} /(1+r)^{\top}
$$

Sometimes interest is charged more frequently than once per year

Semi- annually (2 times a year)	Quarterly (4 times a year)	Monthly (12 times a year)	Weekly (52 times a year)	Daily (365 times a year)	Continuous

Formula for compounding more than once a year

Compounding an investment \boldsymbol{m} times a year provides end-of-year wealth of:

$$
C_{0}\left(1+\frac{r}{m}\right)^{m * T}
$$

Where $\boldsymbol{C}_{\mathbf{0}}$ is the initial investment and r is the stated annual interest rate.

The stated annual interest rate is the annual interest rate without consideration of compounding.

Effective Annual Rate

What is the end-of-year wealth if Christin Robinson receives a stated annual interest rate of 9 percent compounded monthly on a €1 investment?

Effective Annual Rate

What is the end-of-year wealth if Christin Robinson receives a stated annual interest rate of 9 percent compounded monthly on a $€ 1$ investment?

$$
€ 1\left(1+\frac{0.09}{12}\right)^{12}=€ 1 \times(1.0075)^{12}=€ 1.0938
$$

The annual rate of return is 9.38 percent. This annual rate of return is called either the effective annual interest rate (EAR) or the effective annual yield (EAY).

Due to compounding, the effective annual interest rate is greater than the stated annual interest rate of 9 percent.

Formula for continuous compounding
Compound every infinitesimal instant:

$$
C_{0} \lim _{m \rightarrow \infty}\left(1+\frac{r}{m}\right)^{m * T}
$$

where $\boldsymbol{C}_{\mathbf{0}}$ is the initial investment and r is the stated annual interest rate.

Continuous Compounding

Effective Annual Rate

What is the end-of-year wealth if Christin Robinson receives a stated annual interest rate of 9 percent compounded infinitely on a €1 investment?

Effective Annual Rate

What is the end-of-year wealth if Christin Robinson receives a stated annual interest rate of 9 percent compounded infinitely on a €1 investment?

$$
€ 1 e^{0.09 * 1}=€ 1.0942
$$

The annual rate of return is 9.42 percent.

3. Amortization, Net Present Value and Return on Investment

Time

Investments Operational
I_{0}
\mathbf{I}_{1}
\mathbf{O}_{1}
I_{3}
O_{3}
I_{T}
O_{T}

Assume interest rate r over period T, compound factor $q=1+r$
Capital Value at Period T = Annual Capital Payback A

$$
\begin{aligned}
I_{0} q^{T}+\left(I_{1}+O_{1}\right) q^{T-1}+\left(I_{2}+O_{2}\right) q^{T-2}+\ldots & =\mathrm{A}\left(q^{T-1}+q^{T-2}+\ldots\right) \quad \mid: q^{T} \\
I_{0}+\left(I_{1}+O_{1}\right) q^{-1}+\left(I_{2}+O_{2}\right) q^{-2}+\ldots & =\mathrm{A}\left(q^{-1}+q^{-2}+\ldots\right) \\
I_{0}+\sum_{t=1}^{T}\left(I_{t}+O_{t}\right) \boldsymbol{q}^{-t} & =\mathrm{A} \sum_{t=1}^{T} q^{-t}
\end{aligned}
$$

$$
\begin{aligned}
& I_{0}+\sum_{t=1}^{T}\left(I_{t}+O_{t}\right) q^{-t}=\mathrm{A} \sum_{t=1}^{T} q^{-t} \\
& I_{0}+\sum_{t=1}^{T}\left(I_{t}+O_{t}\right) q^{-t}=\mathrm{A} \frac{q^{T}-1}{r q^{T}} \\
& \mathbf{A}=\left(I_{0}+\sum_{t=1}^{T}\left(I_{t}+O_{t}\right) q^{-t}\right) \frac{r q^{T}}{q^{T}-1} \\
& \mathbf{A}=\left(I_{0}+\sum_{t=1}^{T}\left(I_{t}+O_{t}\right) q^{-t}\right) \frac{r}{1-q^{-T}}
\end{aligned}
$$

In case that I_{t} and O_{t} are constant every year

$$
\begin{gathered}
\mathrm{A}=\left(I_{0}+(I+O) \sum_{t=1}^{T} q^{-t}\right) \frac{r}{1-q^{-T}} \\
\mathrm{~A}=\left(I_{0}+(I+O) \frac{q^{T}-1}{r q^{T}}\right) \frac{r}{1-q^{-T}} \\
\mathrm{~A}=\mathrm{I}_{0} \frac{r}{1-q^{-T}}+I+O
\end{gathered}
$$

Time

0	1	2	3	$\ldots .$.	T
I_{0}	I_{1}	I_{2}	I_{3}		I_{T}
	O_{1}	O_{2}	O_{3}		O_{T}
	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$		$\mathrm{~S}_{\mathrm{T}}$

Investments	I_{0}	I_{1}	I_{2}	I_{3}	I_{T}
Operational		O_{1}	O_{2}	O_{3}	O_{T}
Turnover/Sales		S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{\mathrm{T}}$

Assume interest rate r over period T, compound factor $q=1+r$
Capital Value at Period T (Return on Investment ROI)

$$
\begin{aligned}
R O I & =-I_{0} q^{T}+\left(-I_{1}-O_{1}+S_{1}\right) q^{T-1}+\left(-I_{2}-O_{2}+S_{2}\right) q^{T-2}+\ldots \\
& =\left[-I_{0}+\left(-I_{1}-O_{1}+S_{1}\right) q^{-1}+\left(-I_{2}-O_{2}+S_{2}\right) q^{-2}+\ldots\right] q T \\
& =\left[-I_{0}+\sum_{t=1}^{T}\left(-I_{t}-O_{t}+S t\right) q^{-t}\right] q T
\end{aligned}
$$

Net Present Value (NPV)

$$
\mathrm{NPV}=R O I / q T=-I_{0}+\sum_{t=1}^{T}\left(-I_{t}-O_{t}+S t\right) q^{-t}
$$

WWOLVERHAMPTON =GரiA ब

Summary Payback Rate, ROI and NPV

- Annual Capital Payback Rate: $\quad \mathrm{A}=\left(I_{0}+\sum_{t=1}^{T}\left(I_{t}+O_{t}\right) q^{-t}\right) \frac{r}{1-q^{-T}}$

$$
\text { in case of constant } \mathrm{I}_{\mathbf{t}}, \mathrm{O}_{\mathbf{t}}: \quad \mathrm{A}=\mathrm{I}_{0} \frac{r}{1-q^{-T}}+I+O=\mathrm{I}_{0} \frac{r q^{T}}{q^{T}-1}+I+O
$$

- Net Present Value: $N P V_{T}=-I+\sum_{t=1}^{T}\left(S_{t}-I_{t}-O t\right)(1+r)^{-t}$
- Return on Investment: $\quad R O I_{T}=N P V_{T}(1+r)^{T}$

I - Investment
T - Period (depreciation)
r - Interest Rate
S_{t} - Revenues, Sales in year t
I_{t} - Investments in year t (e.g. spare parts, etc.)
O_{t} - Operational Costs in year t

Investment useful if NPV>0
4. Financial calculation AM - Polymer

ers

Machine Type	P 396
Parts per job	72
Parameter set	$120 \mu \mathrm{~m}$ EOS UD
Building Time	30 h

Build times can be calculated accurately when stacking a job

Example for P396

Investment cost

- Basic system
- Periphery
- Accessories
- Powder Handling 300,000 €
eys
e-Manufacturing Solutions

Depreciation Period

- Machine runs longer than depreciation period - Depreciation due to technological progress

5 years

Utilization/year

- Long build times lead to high utilization
- Prototyping: 1,000-2000
- Serial Production: 5,000 h

5,000 hours

Example for P396

Investment cost

- Basic system
- Periphery
- Accessories
- Powder Handling 300,000 €

els
e-Manufacturing Solutions

Service \& Consumables

- Service Contract
- Software Licenses
- Power
- Rent

Depreciation Period

- Machine runs longer than depreciation period
- Depreciation due to technological progress

Utilization/year

- Long build times lead to high utilization
- Prototyping: 1,000-2000
- Serial Production: 5,000 h

5 years
5,000 hours

$$
\begin{gathered}
\text { Annual Machine Cost }=300,000 € \frac{0.05 \cdot 1.05^{5}}{1.05^{5}-1}+30,000 €=99,300 € \\
\text { Machine Cost per hour }=\frac{99,300 €}{5,000 h}=19.86 € / h
\end{gathered}
$$

Volume Parts $\left[\mathrm{cm}^{3}\right]$	7,729
Volume Bounding Boxes (job height x platform area $\left[\mathrm{cm}^{3}\right]$	66,470
Density Sintered PA 2200 [g/cm	
Powder Density PA 2200 $\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	0.93
Refreshment rate	0.45

Volume Parts $\left[\mathrm{cm}^{3}\right]$	7,729
Volume Bounding Boxes (job height x platform area $\left[\mathrm{cm}^{3}\right]$	66,470
Density Sintered PA 2200 [g/cm	
Powder Density PA 2200 $\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	0.93
Refreshment rate	0.45

Exemplary calculation: Powder usage $=7,729 \mathrm{~cm}^{3} * 0.93 \mathrm{~g} / \mathrm{cm}^{3}+(66,470-7,729)^{*} 0.45 * 50 \%$
PA2200
7.18 kg
13.22 kg
$=20.4 \mathrm{~kg}$

Job Cost $€=$ Build time h^{*} Machine Cost rate $€ / \mathrm{h}+$ Material Used kg * Material Cost $€ / \mathrm{kg}$
Job Cost $€=30 \mathrm{~h} \quad * \quad 20 € / \mathrm{h}+20 \mathrm{~kg} \quad * \quad 64 € / \mathrm{kg}$

Job Cost $€=$ Build time h^{*} Machine Cost rate $€ / \mathrm{h}+$ Material Used kg * Material Cost $€ / \mathrm{kg}$

Job Cost € =	30 h	*	20 €/h	+	20 kg	*	64 €/kg
Job Cost € =		600 €		+		1,28	

Job Cost $€=$ Build time h^{*} Machine Cost rate $€ / \mathrm{h}+$ Material Used kg * Material Cost $€ / \mathrm{kg}$

Job Cost € =	30 h	*	20 €/h	+	20 kg	*	64 €/kg
Job Cost € =		600 €		+		1,280 €	
Job Cost $€=$		1,880					

Job Cost $€=$ Build time h * Machine Cost rate $€ / \mathrm{h}+$ Material Used kg * Material Cost $€ / \mathrm{kg}$

Job Cost $€=30 \mathrm{~h}$	*	20 €/h	+	20 kg	*	$64 € / \mathrm{kg}$
Job Cost $€=$	600 €		+		1,280 €	
Job Cost $€=$	1,880 €					
Cost by Part $€=$	1,880 €	2 parts				

5. Financial calculation AM - Metal

Case: Fuel Nozzle

e\%s

Facts:
So far: production of 700 parts, cost pp $€ 100$, profit margin pp 5\%

Additive Manufacturing of fuel nozzles:

- Investment $€ 650,000$ for the AM system, annual operational expense of €40,000 for service contract and €60,000 for system operator, system utilization 5,000h
- Material for AM: IN718 with specific cost of $140 € / \mathrm{kg}$ and density $8.15 \mathrm{~g} / \mathrm{cm}^{3}$, support structure takes 10% more material and material losses of 5% are assumed
- AM job characteristics: Volume of parts per job $85 \mathrm{~cm}^{3}$ with 5 parts per job, build time per job 17h
- Value add 20\%

Interest rate 5\%

Cost Calculation Formula Metal

Job cost $€=\quad$ Machine Cost $€ \quad+$

Material Cost $€$

Material Used kg \times

Specific Material Cost $€ / \mathrm{kg}$

Cost Calculation Formula Metal

Job cost $€=$ Build time $h \times$ Machine Cost Rate $€ / \mathrm{h}+$ Material Used kg \times Specific Material Cost $€ / \mathrm{kg}$

Calculated in Job	Investment Cost	Part Volume
Preparation	Service \& Consumables	Support Volume
Software	Depreciation Period	Material Losses
	Utilization / Year	

Exemplary Calculation of job duration

Machine Type	M 290
Parts per job	9
Material	NickelAlloy IN718
Volume $\left(\mathrm{cm}^{3}\right)$	85
Parameter set	DirectPart $(\mathbf{4 0 \mu m})$
Building Time	$\mathbf{1 7} \mathbf{~ h}$

Build time can be calculated accurately when preparing a build job

Example for M290

els

Investment cost

- Basic system
- Periphery
- Accessories
- Powder Handling

650,000 €

Service \& Consumables

- Service Contract
- Software Licenses
- Power
- Rent

40,000 €/year

Depreciation Period

- Machine runs longer than depreciation period
- Depreciation due to technological progress

5 years

Utilization/year

- Long build times lead to high utilization
- Prototyping: 1,000-2000
- Serial Production: 5,000 6,000

5,000 hours

WOLVERHAMPTON

Example for M290

Investment cost

- Basic system
- Periphery
- Accessories
- Powder Handling 650,000 €

els

Service $\&$ Consumables

- Service Contract
- Software Licenses
- Power
- Rent

Depreciation Period

- Machine runs longer than depreciation period
- Depreciation due to technological progress

5 years

Utilization/year

- Long build times lead to high utilization
- Prototyping: 1,000-2000
- Serial Production: 5,000 6,000

5,000 hours

$$
\begin{gathered}
\text { Annual Machine Cost }=650,000 € \frac{0.05 \cdot 1.05^{5}}{1.05^{5}-1}+40,000 €=190,133.619 € \\
\text { Machine Cost per hour }=\frac{190,133.619 €}{5000 h}=38.03 € / \mathrm{h}
\end{gathered}
$$

elss

Example for NickelAlloy IN718
e-Manufacturing Solutions

Material Used kg			Volume Parts [cm^{3}]	85
			Density NickelAlloy IN718 [$\mathrm{g} / \mathrm{cm}^{3}$]	8.15
			Support Factor	10\%
			Material Losses	5\%

17 h Build time

$38 € / \mathrm{h}$
 Machine Cost rate

0.79 kg
Material Used

646 €
Machine Cost

110 € Material Cost

More detailed calculations by a simple Excel Tool

Study the influence of

- Investment cost
- Maintenance costs
- Postprocessing
- Qualification and training costs
- Build time
- Utilization per year
- Powder price
- Support volume and material losses
- Depreciation period
- Interest rate
on Amortization and RO
\square CONCLUSION
Additive Manufacturing offers:
- High value add due to higher quality
- High ROI and short amortization
- Qualification is important to shorten the learning phase (high utilization per year)
- Build time has strong influence on the amortization and $\mathrm{ROI} \rightarrow$ Optimal Design is important
- Smart cost optimization can reduce production costs by 20-30\%

Example: Through smart cost optimization production cost can be reduced by 26%

Original
ZOOptimized
Source: EOS/SRH Workshop 2018

Thank you!

